Was bringt die gleichstufige Temperierung?
Die temperierte Stimmung hat sich in der unserer abendländischen Musikkultur durchgesetzt - trotz des offensichtlichen Nachteils, dass ihre Intervalle nicht mehr rein sind. Das war nur möglich, weil gewichtige Vorteile den Makel der Unreinheit wettgemacht haben: 1. Eine einzige Stimmung reicht für alle Tonarten: der Grundton ist frei wählbar. Im Prinzip muss bei der reinen Stimmung für jede Tonart und jeden Grundton neu gestimmt werden. Bei einem Cembalo sind das einige Saiten und bei einer Orgel ist das wirklich eine grosse Aufgabe in Anbetracht der vielen Register und Pfeifen. Je weiter die Tonarten voneinander entfernt sind - d.h. je mehr
Weshalb Resonanz auch bei Unschärfe funktioniert
Wann entsteht Resonanz? Resonanz zwischen zwei physikalischen Medien hängt vom Frequenzverhältnis ihrer Eigenschwingungen ab. Wenn die beiden Frequenzen einen einfachen Bruch bilden, z.B. 2/1 oder 3/2, kann Resonanz entstehen. In einem früheren Beitrag habe ich dargestellt, wie die zehn einfachste Frequenzverhältnisse mathematisch zwingend genau zu den zehn Tönen führen, die in unseren Tonleitern vorkommen, seien es Dur, die verschiedene Molltonleitern, Kirchentonarten, Durpentatonik, Mollpentatonik, Bluestonleiter etc.. Reine und temperierte Stimmung Funktioniert die Resonanz aber auch in der gleichstufig temperierten Stimmung? Im Beitrag zur gleichstufigen Stimmung haben wir gesehen, wie sich die beiden Stimmungen unterscheiden. Abb. 1 zeigt die die reine Stimmung
Wie die temperierte Stimmung entstand
Tonleitern vor der Temperierung Natürliche Tonleitern Die Tonleitern der menschlichen Kulturen haben sich über die Jahrtausende auf natürliche Weise, d.h. ganz ohne bewusste mathematische Überlegungen entwickelt. Dass trotzdem sehr viel Mathematik dahinter steckt, hat mit den Resonanzen der Tonleitertöne zum Grundton zu tun. Diese Resonanzen sind für uns attraktiv und Musik, die auf solchen Resonanzen beruht, hat die Fähigkeit, menschliche Gemeinschaften zusammen zu bringen. Mathematisch kann die Resonanz auf Brüche mit möglichst kleinen ganzen Zahlen zurückgeführt werden und wir konnten rechnerisch ableiten, welche neun Intervalle die deutlichsten Resonanzen aufweisen müssen. Nicht zufällig bestehen alle global verbreiteten Tonleitern - d.h. die Standardpentatoniken, unser
Zwei schlechter resonante Intervalle für die Lücken
Ausgangslage: Zwei Lücken Im Vorbeitrag haben wir erkannt, dass in der Reihe der bisher gefundenen zehn Tonleitertönen zwei Lücken bestehen. Können wir dort auch resonante Töne finden? Folgendes wissen wir bereits: Wir kennen bereits die zehn "resonantesten" Intervalle in der Oktave. Mit diesen zehn Intervallen können die fünf Standard-Pentatoniken, und unser Dur und Moll gebildet werden. Dort stören die Lücken also nicht, nur in der Anordnung aller zehn potentiellen Tonleitertöne fallen sie auf. Intervalle kommen nicht allein, weder in einem Akkord, noch in einer Melodie. Wenn wir also ein resonantes Intervall haben, können wir darauf ein zweites ansetzen (addieren) und
Anordnung der Töne innerhalb der Oktave
Die zehn resonantesten Töne innerhalb der Oktave Wir untersuchen in dieser Textserie die Tonleitern unter dem Aspekt der drei Welten. Alle drei Welten sind mitbeteiligt, wie wir das z.B. gesehen haben bei der Beantwortung der Frage, weshalb die Tonleitern aller Musikkulturen immer genau eine Oktave abdecken. Nur mathematisch oder physikalisch lässt sich das nicht erklären. Unter Hinzunahme der dritten Welt, nämlich unserer mentalen Welt, wird die Bedeutung der Oktave einleuchtend. Auch die Auswahl der in der Tonleiter verwendeten Töne wird über das Phänomen der Resonanz von allen drei Welten bestimmt, wie wir in den Vorbeiträgen gesehen haben. Schauen wir jetzt an,
Wie entsteht das pythagoreische Komma?
Das pythagoreische Komma Das pythagoreische Komma zeigt, dass unser Tonsystem nicht perfekt stimmt, sondern eine Lücke hat, deren Form und Ursache ich in diesem Beitrag beschreibe. Das Komma ist sowohl für unsere Musikpraxis relevant, auf die es ganz konkrete Auswirkungen hat, als auch erkenntnistheoretisch, da es typisch ist für die Probleme, die wir beim Zusammenspiel unserer drei Welten (nach Penrose) beobachten. Es ist in diesem Sinn nicht nur für Musiker ein relevantes Thema, sondern auch für philosophisch interessierte Menschen, die sich fragen, wie Mathematik (ideale Welt), Physik (physikalische Welt) und unser Erleben (mentale Welt) zusammenhängen. Als erstes erkläre ich hier,
Die Wahrnehmung der Oktave mental
Dies ist ein Beitrag zur Entstehung der Tonleitern und setzt den Beitrag zur Resonanz der Oktave fort. Die subjektive Seite Die mathematische oder nach Penrose platonische Welt mit ihren einfachen Zahlenverhältnissen und die physikalische Welt mit ihren Resonanzphänomenen bringt uns die Oktave näher, erklärt aber noch nicht, weshalb dieses Intervall in allen Kulturen die Basis von allen Tonleitern ist. Dazu müssen wir auch die mentale Welt betrachten, das heisst die Welt unserer subjektiven Wahrnehmung. Diese ist zwar allen zugänglich, doch es bleibt ihre eigene und subjektive Wahrnehmung. Ich kann nicht in Ihren Kopf sehen. Zwar können bildgebende Verfahren (MRI, PET) objektiv feststellen, welche Hirnareale wann aktiv
Tonleitern in der 3-Welten-Theorie
Tonleitern sind Muster Wenn Sie eine Melodie hören, steht dahinter eine Tonleiter, d.h. ein Angebot von wenigen, ganz bestimmten Tönen, die überhaupt in der Melodie vorkommen können. Diese Töne in einer linearen Folge bilden die Leiter. Die meisten Melodien, die in unserem Kulturkreis zu hören sind, lassen sich auf eine einzige Tonleiter, die ionische oder Dur-Tonleiter zurückführen, die sieben Töne in ganz bestimmten Abständen aufweist. Tausende von Tonleitern Es gibt aber Tausende von unterschiedlichen Tonleitern. Vermutlich kennen Sie neben Dur auch Moll und haben vielleicht etwas von der Pentatonik gehört, von Ganztonleitern, von Phrygisch und Lydisch, von indischen Ragas, japanischen






